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H C Ottinger 
Fakultat fur Physik der Universitat Freiburg, Hermann-Herder-Strasse 3, D-7800, 
Freiburg, West Germany 
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Abstract. It is shown how the solution of the mean-field equations for the ANNNI model 
can be reduced to the iteration of an area-preserving two-dimensional mapping if an 
external magnetic field is applied. This method is analysed in detail and compared with 
the exact numerical solution of the mean-field equations for simple periodic magnetisations. 

1. Introduction 

Since the discovery of spatially modulated phases in several magnetic materials 
(Habenschuss et  a1 1974, Rossat-Mignod et  a1 1980) simple theoretical models which 
lead to a better understanding of modulated phases have been studied intensively. 
These models, for example the axial next-nearest-neighbour Ising or ANNNI model 
(Elliot 1961, Hornreich et a1 1979, Selke and Fisher 1979, 1980, Fisher and Selke 
1980, Selke 1981, Rujan 1981, Williams et  a1 1981, Barber and Duxbury 1981, 1982) 
and the chiral Potts or asymmetric clock model (Ostlund 1981, Huse 1981), have 
been investigated by a variety of different methods. The topology of the phase diagram 
has been studied very successfully by the mean-field theory (MFT) of these models 
(Bak and Boehm 1980, Yokoi et a1 1981, Ottinger 1983). 

However, the mean-field equations are not exactly solvable even for models which 
have a spatially modulated magnetisation along one axis only and a constant magnetisa- 
tion perpendicular to this axis. In this paper two methods of solving approximately 
the MFT or the ANNNI model on a cubic lattice in the presence of an external magnetic 
field are compared. These methods are as follows. 

(1) Assuming a periodic magnetisation the mean-field equations can be solved 
numerically on small finite lattices (Bak and Boehm 1980, Yokoi et a1 1981). 

(2) Approximate solutions of the mean-field equations can be generated by iterat- 
ing an area-preserving two-dimensional mapping (Bak 198 1). 

In the following, the first method will be called the ‘simple commensurate method’ 
(SCM) and the second method will be called the ‘iterated mapping method’ (IMM). 

A further goal of this paper is to show how the MFT of the ANNNI model can be 
treated by the IMM if an external magnetic field is applied. 

In the next section the MFT of the ANNNI model and the two methods of solving 
it numerically are described. The results of these methods will be compared in the 
third section. A brief summary concludes the paper. 
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2. MFT of the ANNNI model 

The ANNNI model is an Ising model with competing ferromagnetic nearest-neighbour 
(J1 > 0) and antiferromagnetic next-nearest-neighbour interactions (Jz < 0) along one 
axis. Perpendicular to this axis there is only a ferromagnetic interaction ( J o > O )  
between nearest neighbours. Assuming the ferromagnetic coupling Jo to produce 
layers of constant magnetisation, the mean-field free energy per site of the three- 
dimensional ANNNI model in an external field h is, apart from a constant term, (Yokoi 
et a1 1981) 

F = -(2N)-' 1 Mz [4J&fZ + JI (Mz - I  + Mz +I)  + Jz (Mz -2 + Mz +dI  
Z 

- ( h / N )  1 M,  + (keT/2N) 1 [(I +M,) ln(1 + M z )  + (1 -MZ) ln(1 -M,)] 
2 2 

(1) 

where M, is the average magnetisation of the zth layer and N is the number of layers. 
The average magnetisations M, are found by minimising the free energy. 

The SCM is based on the numerical solution of the mean-field equations 

M, = t anh{(kBT) - ' [4 J~ ,  +JI(M,-~+~,+~)+JZ(M,-Z+~~+Z~)+~~~ (2) 

which characterise the magnetisations for which the free energy (1) is stationary. In 
order to solve these equations it is assumed that M, is periodic with period N ( N  s 18 
in this paper). By this assumption the infinite system of equations (2) is reduced to 
a system of N equations which, in general, allow many solutions. The physical solution 
minimises the free energy (Bak and Boehm 1980, Yokoi et a1 1981). 

The drawback of the SCM is that by assuming periodic solutions with small periods 
only a few wavenumbers can occur. Therefore, only simple commensurate phases 
can be found; higher commensurate and incommensurate phases are excluded. This 
drawback is avoided if the free energy is minimised by the IMM. 

The IMM is based on the ansatz 

M, = m + A  C O S [ ~ . ~ ( $ Z ) + ~ , ]  (3)  
where m is influenced by the external field h. 4, = :.n = constant describes the q = 
commensurate phase, 4, = wz is a phase with q = $1 + (2w/.n)]. Using 4z+2-24,+1 + 
4,<<2(q5z+1-r$,)~< 1 for wavenumbers near q = :  and with the ansatz (3) the 
free energy (1) can be written as (apart from constants and terms that cancel on 
summing over the lattice) 

where J1 and J2 are parametrised by a and S : 

J1 = 8SaA'ksT J2 = -2aA'k~T.  ( 5 )  
The potential Vm~(q5) which generalises the case m = 0 (Bak 1981) is 

VmA(4) = a ( I (m + A  cos 4 )  + I ( m  -A COS 4 )  + I ( m  + A  sin 4 )  + I ( m  -A sin 4)), (6a )  

where 

tanh-la  d ~ = ~ [ ( l + ~ ) l n ( l + x ) + ( l - x ) l n ( l - x ) ] .  (6b  1 
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The physical phases C$z minimise the free energy (4). F is stationary if 

w2+1= w ,  +aVLA(#%) ( 7 a )  

where w , + ~  is defined by 

42+1= C$z + W,+l. 
These equations define an area-preserving two-dimensional iterated mapping, the 
trajectories of which (independent of 8, this is independent of J 2 / J 1 )  determine the 
magnetisation for which F is stationary (via equation (3)). Without any difficulty the 
magnetisation along the axis with competing interactions can be calculated for several 
thousand sites. For each S the trajectory which yields the minimum of the free energy 
has to be found. 

The drawback of the IMM is the indirect definition of Jo and h by A and m (J1 
and J2 can be varied directly by varying a and 8) .  In order to determine Jo and h 
one can plot 

(8) 

against M, for the trajectory which minimises F. The validity of the approximations 
leading to equation (4) can be estimated by the deviation of f ( M Z )  from a straight 
line, because according to equation (2) f ( M , )  = 4 J a 2  + h. Jo and h can be determined 
by fitting a straight line to f ( M Z ) .  

f (M, )  = ksT tanh-'M, -Jl(Mz-l +M,+1)-Jz(M,-2+M,+~) 

3. Numerical results 

Figure 1 shows the results of computer iterations of equations (7) for A = 0.71, a = 3.68 
and m =0.1 (1500 iterations for each trajectory). The figure is very similar to the 

w 0- 
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Figure 1. Trajectories of the iterated mapping (7). A =0.71, a = 3.68 and m =0.1. 
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corresponding figure for m = 0 (Bak 1981), but with increasing m the central bubble 
becomes larger. The fixed point q5, = &T (or equivalently 4, = Z T ) ,  w, = 0 describes 
the previously mentioned q = $ phase, the k e d  point 4, = &, w, = 0 corresponds to 
the magnetisation m, m -A ,  m, m + A .  . . along the axis and is always unstable 
(maximum of the free energy). The closed orbits around this fixed point describing 
the same commensurate phase with an incommensurate modulation are also always 
unstable. 

The smooth invariant trajectories below the central bubble are stable for appropri- 
ate values of S. For these trajectories the mean value of w, is @ < O  and thus 
q = $1 + (2@/7r)]<$. Taking into account the fluctuations of w,  around @, 4z can 
be written in a form characteristic for incommensurate phases: 

4, = ( @ z  + a ) + g ( @ z  +a) (9) 
where g is a periodic function with period t7r and a is an arbitrary phase. 

Figure 2 shows a plot of the wavenumbers obtained from the stable trajectories 
against S .  For each value of S the free energies of some 1000 trajectories were 
computed (1500 iterations for each trajectory). For comparison the step function q ( S )  
obtained by the SCM on lattices of length N s 18 is also shown. In order to apply the 
SCM, f ( M , )  (equation (8)) was plotted against M ,  (figure 3 for example) and the 
parameters Jo and h for which the mean-field equations f ( M Z )  = 4JJ4, + h are solved 
optimally were obtained by linear regression (.TI and J2 are defined by (5 ) ) .  The small 
deviation of f ( M Z )  from a straight line justifies the approximations used in the IMM. 

For a further check the mean values of the magnetisations obtained by the SCM 
were computed. The deviations from the IMM value M = 0.1 are less than five per 
cent for S < 0.27 and less than ten per cent for larger values of S .  The IMM shows no 
‘lock-in’ of simple commensurate wavenumbers for the parameters considered so far. 
The results of the SCM are, therefore, quite misleading. 

Figure 4 shows the results of computer iterations of equations (7) for A = 0.71, a = 
8 and m = 0.1. For these parameters, corresponding to a lower temperature and a 
weaker magnetic field, chaotic trajectories and small bubbles between the smooth 
invariant trajectories can be observed. These small bubbles are miniature reproduc- 
tions of figure 1. The corresponding trajectories jump from bubble to bubble. Again 

0 1 5 4  1 I I I 
0 0 1  0 2  03 0 4  

6 

Figure 2. Wavenumber q against S = -(J1/4J2) for A = 0.71, a = 3.68 and m = 0.1. 
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Figure 3. f ( M , )  against M,  for A = 0.71, a = 3.68, m = 0.1 and 6 = 0.2 

Figure 4. Trajectories of the iterated mapping ( 7 ) .  A = 0.71, a = 8 and m = 0.1. 

the trajectories within the bubbles are always unstable and the points between the 
bubbles which form a limit cycle with a few points only (fixed point for the central 
bubble) describe stable commensurate phases. For instance the four points, between 
the four bubbles below the central bubble, correspond to a wavenumber 4 = i(1 -a) = 
3 3 1 1 5 9 1 / 3 2 5  7 
16. Trajectories yielding wavenumbers $, &, a, 3, 24, a, 5, 36, s, ii, zs and 40 have 
been found. Figure 5 shows the wavenumbers that lock-in at certain values of S. The 
computations have been done with a step width of &t for S and some 2500 trajectories. 

Figure 6 shows the good agreement of the magnetisations obtained by the IMM 
and the SCM in the 4 = $ phase. The wavenumbers a, $, f and & obtained by the IMM 
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Figure 5. Simple commensurate wavenumbers obtained by the IMM for A = 0.71, a = 8 
and m =0.1.  
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Figure 6 .  Comparison of the magnetisations along the axis with competing interactions 
for the q = 6 phase ( A  = 0.71, a = 8, m = 0.1 and 6 = 0.24). Broken arrows, IMM; full 
arrows. SCM. 

are also found by the SCM. In order to avoid large deviations from the IMM mean 
magnetisation m =0.1 being favoured by the SCM, the magnetisations M, in the 
magnetic term of the free energy (1) were replaced by the IMM value m (the SCM 

yields m =0.134 in the 4 = A  phase and m =0.150 in the q = $ phase). The IMM 

wavenumbers and 5 are merely metastable because the free energy obtained by 
the SCM is slightly smaller for the wavenumbers 8 and f respectively. The IMM yields 
simple commensurate phases, although using the IMM there is, in contrast to the SCM, 
no necessity for these phases to occur. A second new feature figure 4 shows, as 
compared with figure 1, are the chaotic trajectories surrounding the central bubble 
(around the small bubbles and in figure 1 such trajectories also exist). These trajectories 
stay near the fixed point 4, = $7, w ,  = 0 (4 = a phase) for many iterations (lattice sites) 
and after some time, which is random, they jump in a few iterations to the equivalent 
fixed point q52 =an, w ,  = 0, where they stay again for many iterations (q  = a phase). 
Therefore, chaotic trajectories correspond to commensurate phases with local per- 
turbations, ‘solitons’, that slightly alter the wavenumber. These phases were conjec- 
tured to be stable by Bak (1981). This conjecture is incorrect; the chaotic trajectories 
correspond at most to metastable configurations (Aubry 1982). 
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4. Summary 

In this paper the MFT of the three-dimensional ANNNI model in an external field was 
studied by two different methods. Using the uncomplicated SCM, the exact 
numerical solution of the mean-field equations for simple periodic magnetisations, a 
‘lock-in’ of commensurate phases cannot be demonstrated significantly because only 
a few simple wavenumbers can occur in this method. 

The more laborious IMM, which reduces the solution of the MFT to the iteration 
of an area-preserving two-dimensional mapping, corresponds to the approximate 
solution of the mean-field equations on huge lattices, thus admitting arbitrary 
wavenumbers. Besides the commensurate phases of the SCM, incommensurate phases 
and commensurate phases with localised perturbations (‘solitons randomly pinned to 
the lattice’) can be found by the IMM. 
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